The Institute of Canine Biology
  • HOME
  • Blog
  • Breed Preservation
    • Breeding for the future >
      • BFF Breed Groups
    • Breed Status
    • The "Elevator Pitch"
    • What's in the Gene Pool?
    • What population genetics can tell us about a breed
    • What population genetics can tell you...Tollers & Heelers
    • How to use kinship data
    • Using EBVs to breed better dogs >
      • How population size affects inbreeding
      • EBV Examples
    • How to read a dendrogram
    • Global Pedigree Project >
      • The Database
    • Finding the genes without DNA
    • How to read a heat map
  • Courses
    • COI BootCamp (FREE!)
    • ICB Golden Retriever Breed Workshop
    • Minicourse: Preserve Genes To Preserve Breeds
    • Basic Population Genetics (FREE)
    • Genetic rescue: the genetics of cross breeding (NEW!)
    • The Biology of Dogs (Open Reg )
    • Managing Genetics For the Future >
      • Managing Genetics For the Future Open Reg (Open Reg) >
        • Syllabus - Managing Genetics for the Future
    • Genetics of Behavior & Performance (Open Reg)
    • Strategies for Preservation Breeding
    • DNA For Dog Breeders (May2025) >
      • DNA For Dog Breeders (Open Reg)
    • Understanding Hip & Elbow Dysplasia (Open Reg) >
      • MORE FREE COURSES >
        • Quickie Genetics (Free!)
        • Group Discounts
        • Useful Genetics (Free!)
        • Strategies for Preservation Breeding (Sept 2023) >
          • Heredity & Genetics (Free!)
        • Basic Genetics Videos
  • Health Data
    • Bloat (Purdue Study)
    • Body Condition Score >
      • % Dysplastic vs BCS
    • Breed Comparions
    • Cancer
    • Cardiac
    • Cataracts
    • Caesareans
    • Deafness
    • Degenerative Myelopathy
    • Elbow Dysplasia
    • Epilepsy
    • Genetic Diversity
    • Genetic Diversity (MyDogDNA)
    • Hip Dysplasia >
      • Hip Dysplasia (Hou et al 2013)
    • Metabolic
    • Inbreeding Effects
    • Inbreeding (Gubbels)
    • Inbreeding (Dreger)
    • Lifespan
    • Litter size
    • mtDNA
    • Orthopedic
    • Mode of Inheritance
    • Patella Luxation
    • Thyroid
    • Portosystemic shunt
    • Purebred vs Mixed (UC Davis)
    • Purebred vs Mixed Breed (Bonnett)
    • Spay & Neuter Effects
    • Calboli et al 2008
    • Hodgman (1963)
    • Scott & Fuller (1965)
    • Stockard: Purebred crosses
    • Summers (2011)
  • Resources
    • Stud Books >
      • American Kennel Club stud books
      • Field Dog stud books
      • The Kennel Club (UK)
    • Genetics Databases
    • Learn
    • Videos about dog genetics
    • The Amazing Things Dogs Do! (videos) >
      • Livestock Management
      • Livestock guarding
      • Transportation, exploration, racing
      • Conservation & wildlife management
      • Detection Dogs
      • Medicine & Research
      • Entertainment
      • AKC/CHF Podcasts
    • Read & Watch
    • Bookshelf
  • Projects
    • How To Interpret Breed Analyses
    • Ilska et al 2025 Figures >
      • # of dogs whole pedigree (Ilska)
      • Percent of Dogs Bred (LReg 2005-15)
      • % Males Bred
      • Imported Sires
      • Proportional Population Growth
    • Afghan Hound
    • More details about the Toller study
    • Belgian Tervuren >
      • Belgian Terv p2
      • Belgians- why population size matters
    • Bernese Mountain Dog
    • Boxer
    • Brussels Griffon
    • Bullmastiff
    • Canaan Dog >
      • Canaan analyses
    • Cesky Terrier >
      • Cesky genetic history
    • Chinook
    • Curly-coated Retriever
    • Doberman
    • Entelbucher Mountain Dog
    • Flatcoat Retriever
    • French Bulldog
    • German Shorthair
    • Golden Retriever >
      • Golden Retriever Pedigree Charts
    • Irish Water Spaniel >
      • IWS (6 Nov 17)
    • Labrador Retriever
    • Manchester Terrier
    • Mongolian Bankhar >
      • Research Updates
      • Bankhar 1
    • Norwegian Lundehund
    • Plummer Terrier
    • Otterhound
    • Portuguese Water Dog >
      • Portuguese Water Dog (pt 2)
    • Ridgeback
    • Schipperke
    • Standard Poodle >
      • The Problem With Poodles
      • 3poodle pedigree charts
      • 3Poodle Wycliff dogs
      • Poodle Genetics
    • Tibetan Spaniel
    • Tibetan Mastiff
    • West Highland White Terrier
    • Whippet
    • Wirehaired Pointing Griffons
    • UK KC Graphs >
      • UK KC Breed Status
      • UK Groups
      • KC Gundogs
      • KC Hounds
      • KC Terriers >
        • Terriers (select breeds)
      • KC Pastoral
      • KC Toys
      • KC Working
      • KC Utility
      • Australian KC
  • Genetics
    • Genetic Status of UK KC Breeds (2015)
    • Heterozygosity (DNA) >
      • Heterozygosity vs COI
      • Heterozygosity
      • High and Low Heterozygosity
      • Heterozygosity Countries
      • Heterozygosity by Breed
      • EU Breed Skull Restrictions
    • Mortality (Lewis et al 2018)

HOW TO INTERPRET BREED ANALYSES

Population Statistics
Because these statistics might be unfamiliar to you, there are defined here:

Effective number of founders (fe) A breed might have 25 founders, but some of the original genetic diversity is invariably lost over time.  The effective number of founders is an estimate of the number of founders that would produce the current genetic diversity of the population if all contributed equally to subsequent generations.   This is a measure of the fraction of the genes contributed by the founders that still remain in the population. 

Founder genome equivalent (fg) Founder genome equivalents of a population is that number of equally-contributing founders that would be expected to produce the same genetic diversity as observed in the current population if there is no random loss of founder alleles in descendants (e.g., through genetic drift).  

Effective number of ancestors (fa) This is the minimum number of ancestors - which can be founders or not - needed to explain the genetic diversity of the current population.  If there have been no population bottlenecks, fa will equal fe; the number and severity of bottlenecks will be reflected in the difference between fa and fe.

Mean kinship (MK) This is an index of the average degree of genetic similarity or relationship between an animal and other members of the population.  An animal with many relatives in the population will have a high degree of genetic similarity to many animals, and its MK value will be high; an animal with few relatives will have a low MK.  Animals with no relatives in a population have MK = 0%.  Consequently, animals with lower values of MK are genetically more valuable in the population because they carry alleles that are uncommon or rare.  Every time an animal is born or dies in the population, the MK of all of the animals change because alleles in the new animals become more common and those in the animals that die become less common.  The  coefficient of inbreeding of an animal is equal to the kinship of its parents; so the greater the genetic similarity between two animals, the greater the risk of inheriting two copies of the same allele.
Blog

News


About Us

Contact Us








Copyright © 2012-2017 Institute of Canine Biology
Picture
Picture