The Institute of Canine Biology
  • HOME
  • Blog
  • Breed Preservation
    • Breeding for the future >
      • BFF Breed Groups
    • Breed Status
    • The "Elevator Pitch"
    • What's in the Gene Pool?
    • What population genetics can tell us about a breed
    • What population genetics can tell you...Tollers & Heelers
    • How to use kinship data
    • Using EBVs to breed better dogs >
      • How population size affects inbreeding
      • EBV Examples
    • How to read a dendrogram
    • Global Pedigree Project >
      • The Database
    • Finding the genes without DNA
    • How to read a heat map
  • Courses
    • COI BootCamp (FREE!)
    • Basic Population Genetics (FREE)
    • Genetic rescue: the genetics of cross breeding (NEW!)
    • The Biology of Dogs (Open Reg )
    • Managing Genetics For the Future >
      • Managing Genetics For the Future Open Reg (Open Reg) >
        • Syllabus - Managing Genetics for the Future
    • Genetics of Behavior & Performance (Open Reg)
    • Strategies for Preservation Breeding (Open Reg)
    • DNA For Dog Breeders (May2025) >
      • DNA For Dog Breeders (Open Reg)
    • Understanding Hip & Elbow Dysplasia (Open Reg) >
      • MORE FREE COURSES >
        • Quickie Genetics (Free!)
        • Group Discounts
        • Useful Genetics (Free!)
        • Strategies for Preservation Breeding (Sept 2023) >
          • Heredity & Genetics (Free!)
        • Basic Genetics Videos
  • Health Data
    • Bloat (Purdue Study)
    • Body Condition Score >
      • % Dysplastic vs BCS
    • Breed Comparions
    • Cancer
    • Cardiac
    • Cataracts
    • Caesareans
    • Deafness
    • Degenerative Myelopathy
    • Elbow Dysplasia
    • Epilepsy
    • Genetic Diversity
    • Genetic Diversity (MyDogDNA)
    • Hip Dysplasia >
      • Hip Dysplasia (Hou et al 2013)
    • Metabolic
    • Inbreeding Effects
    • Inbreeding (Gubbels)
    • Inbreeding (Dreger)
    • Lifespan
    • Litter size
    • mtDNA
    • Orthopedic
    • Mode of Inheritance
    • Patella Luxation
    • Thyroid
    • Portosystemic shunt
    • Purebred vs Mixed (UC Davis)
    • Purebred vs Mixed Breed (Bonnett)
    • Spay & Neuter Effects
    • Calboli et al 2008
    • Hodgman (1963)
    • Scott & Fuller (1965)
    • Stockard: Purebred crosses
    • Summers (2011)
  • Projects
    • How To Interpret Breed Analyses
    • Afghan Hound
    • More details about the Toller study
    • Belgian Tervuren >
      • Belgian Terv p2
      • Belgians- why population size matters
    • Bernese Mountain Dog
    • Boxer
    • Brussels Griffon
    • Bullmastiff
    • Canaan Dog >
      • Canaan analyses
    • Cesky Terrier >
      • Cesky genetic history
    • Chinook
    • Curly-coated Retriever
    • Doberman
    • Entelbucher Mountain Dog
    • Flatcoat Retriever
    • French Bulldog
    • German Shorthair
    • Golden Retriever >
      • Golden Retriever Pedigree Charts
    • Irish Water Spaniel >
      • IWS (6 Nov 17)
    • Labrador Retriever
    • Manchester Terrier
    • Mongolian Bankhar >
      • Research Updates
      • Bankhar 1
    • Norwegian Lundehund
    • Plummer Terrier
    • Otterhound
    • Portuguese Water Dog >
      • Portuguese Water Dog (pt 2)
    • Ridgeback
    • Schipperke
    • Standard Poodle >
      • The Problem With Poodles
      • 3poodle pedigree charts
      • 3Poodle Wycliff dogs
      • Poodle Genetics
    • Tibetan Spaniel
    • Tibetan Mastiff
    • West Highland White Terrier
    • Whippet
    • Wirehaired Pointing Griffons
    • UK KC Graphs >
      • UK KC Breed Status
      • UK Groups
      • KC Gundogs
      • KC Hounds
      • KC Terriers >
        • Terriers (select breeds)
      • KC Pastoral
      • KC Toys
      • KC Working
      • KC Utility
      • Australian KC
    • Breed outcrossing programs
  • Resources
    • Genetics Databases
    • Stud Books >
      • American Kennel Club stud books
      • Field Dog stud books
      • The Kennel Club (UK)
    • Learn
    • Videos about dog genetics
    • The Amazing Things Dogs Do! (videos) >
      • Livestock Management
      • Livestock guarding
      • Transportation, exploration, racing
      • Conservation & wildlife management
      • Detection Dogs
      • Medicine & Research
      • Entertainment
      • AKC/CHF Podcasts
    • Read & Watch
    • Bookshelf

Cavaliers are in trouble

2/10/2022

 
By Carol Beuchat PhD
Since the action in Norway to ban breeding of Cavaliers because the heavy burden of health disorders violated their animal welfare act, there has been much heated discussion in these forums.

At the root of most health issues in dog breeds are the small size of the gene pool and high levels of inbreeding. Let me explain why these things are a problem.
The Cavalier King Charles Spaniel was founded on only a handful of dogs. I've seen numbers of 6 and 8; let's just call it a handful.

​If the stud book is closed, then all the genes the breed will ever have come from those few dogs. Also, because the stud book is closed, dogs can only breed to related dogs. There are no "outcrosses" here; every dog is closely related to every other dog. It's a bit like trapping you and your immediate family on an island from which there is no escape. You can only breed with kin.

Over time, the animals in a closed population can ONLY become more closely related (genetically similar) to each other. Inbreeding can ONLY increase. Furthermore, gene variants are lost every generation through selective breeding and also just by chance. So the variation in the genes in those original 8 dogs is gradually lost over time. Eventually closed populations like this have such high levels of inbreeding that they are wrecked by health problems and infertility, and they simply go extinct.
Picture
In most societies, marrying your cousin is frowned upon. This is because your children would be inbred, at a level of 6.25%. For recessive mutations, that is also a risk of genetic disease at the same level of 6%. In most cultures, that disease risk is deemed too high, and these marriages can even be banned.

For half-sib pairings, the inbreeding produced in the offspring is higher, averaging 12%. Full-sib pairings produce offspring with inbreeding of 25%. For a recessive mutation in the genome, that is a 25% risk of producing an affected animal. 

The problem with Cavaliers is that their level of inbreeding is extraordinarily high. We said that a full sibling cross resulted in inbreeding of 25%. Have a look at these two graphs.

I rounded up the data for two studies, one that included 10 dogs per breed based on US (mostly AKC registered) dogs Dreger et al (2016), and another that included data for 455 Cavaliers registered with the FCI, AKC, UKC, or the Kennel Club ( Bannasch et al., 2021).

For the Dreger et al. dataset (the red graph below), the inbreeding based on DNA for the Cavalier averaged 42.1% (black line), and for the Bannasch et al. data, inbreeding averaged 41.1%. For two unrelated datasets, of very different sizes, the level of inbreeding in the Cavaliers was essentially the same. This reflects the high level of inbreeding and genetic similarity among the dogs. It really doesn't matter how you sample the population, the estimate of average inbreeding doesn't vary much. 

The black lines on the graphs are at the average level of inbreeding in Cavaliers in those two studies. (I have included links below to download the jpg file so you can blow it up big enough to read the breed lavels.) Remember, 25% inbreeding results from a full sibling cross from unrelated parents. The level of inbreeding in Cavaliers is way - WAY - higher than that. Most people would not do a breeding of two littermates, but the inbreeding data show that in fact most breedings are between dogs much more closely related (i.e., genetically similar) than littermates. 
​​
Picture
Picture

We do DNA testing to identify carriers of mutations so we can avoid the 25% risk of producing a puppy that is homozygous for the mutation. We know that every animal has many mutations lurking in its genome, and we can't test for the ones we don't know about. But the probability of producing a puppy homozygous for an unknown mutation is going to be the same as from a known one.

Cavaliers are all so closely related to each other that the average inbreeding produced in a puppy is 40% so the risk of homozogysity in a mutation is 40% as well.

Now, think about this.

You do your DNA testing to avoid producing a puppy affected by a known mutation, which you can prevent entirely by not mating two carriers.

But for all those unknown mutations in the genome, the risk of producing an affected puppy is the same as the average inbreeding, which  is actually 40%, not 25%. ​

DNA testing allows us to test for carriers of mutations so that we can avoid this 25% risk of producing affected animals. But when all the dogs in the population are closely related, the average inbreeding of a litter is 40%, far above the 25% risk you're trying to avoid. You can see from this that health testing in Cavaliers is really not accomplishing anything except costing you money.


The problem with science is that it's true even when it's not what you would like to believe. The data for Cavaliers are clear. No amount of selective breeding is going to improve the health of this breed. You might temporarily reduce the incidence of some specific nasty mutation temporarily in a part of the population, but everybody is in the same genetic pot. Inbreeding will continue to go up over time, the small genetic differences between populations will disappear over time as genetic diversity declines, and eventually you will no longer be able to produce healthy animals. In fact, this is where Cavaliers appear to be now.

Cavaliers are in deep trouble. There are plenty of other breeds in similar shape, but what matters to those that love Cavaliers is whether it can be saved. We know that we can only restore health by restoring genetic diversity. We do know how to do with without losing breed type. Animal breeders have been doing this for hundreds of years to produce quality animals that can be nearly identical, with inbreeding levels in the single digits. It can just as easily be done for dogs as well, and Cavaliers are a perfect candidate. But not in a closed gene pool.

I have to say that what I have read on social media this week makes me worry that breeders will continue to argue about the arrangement of the deck chairs while the ship slowly slips under the waves. I hope I'm wrong. 

REFERENCES

Dreger, DL et al, 2016. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Disease Models & Mechanisms 9(12): 1445-1460. https://doi.org/10.1242/dmm.027037

Bannasch E et al 2021. The effect of inbreeding, body size and morphology on health in dog breeds. Canine Medicine and Genetics 8:12. doi.org/10.1186/s40575-021-00111-4


DOWNLOADS
dreger_et_al_2016_f_cavaliers.png
File Size: 411 kb
File Type: png
Download File

bannasch_et_al_2021_cavaiers_fadj.png
File Size: 593 kb
File Type: png
Download File


To learn more about the genetics of dogs, check out
ICB's online courses

***************************************

Visit our Facebook Groups

ICB Institute of Canine Biology
...the latest canine news and research

ICB Breeding for the Future
...the science of animal breeding


Comments are closed.

    Archives

    January 2030
    February 2025
    January 2025
    December 2024
    November 2024
    October 2024
    July 2024
    June 2024
    May 2024
    March 2024
    February 2024
    July 2023
    April 2023
    November 2022
    July 2022
    May 2022
    April 2022
    March 2022
    February 2022
    November 2021
    October 2021
    December 2020
    January 2020
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    October 2017
    August 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    September 2016
    August 2016
    July 2016
    June 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    February 2014
    December 2013
    October 2013
    September 2013
    July 2013
    March 2013
    July 2012
    April 2012

    Categories

    All
    Behavior
    Border-collie
    Herding

Blog

News


About Us

Contact Us








Copyright © 2012-2017 Institute of Canine Biology
Picture
Picture